Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 14(5): 451-457, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556105

RESUMO

Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum.


Assuntos
Bactérias/enzimologia , Microbiota , Tolueno/metabolismo , Acidobacteria/enzimologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Anaerobiose , Bactérias/genética , Biomassa , Carboxiliases/metabolismo , Catálise , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Lignina/química , Funções Verossimilhança , Metagenômica , Fenilacetatos/química , Filogenia , Proteômica , Proteínas Recombinantes/metabolismo , Esgotos/microbiologia
2.
J Bacteriol ; 193(13): 3257-64, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21572002

RESUMO

Stability and resistance to dissolution are key features of microbial biofilms. How these macroscopic properties are determined by the physiological state of individual biofilm cells in their local physical-chemical and cellular environment is largely unknown. In order to obtain molecular and energetic insight into biofilm stability, we investigated whether maintenance of biofilm stability is an energy-dependent process and whether transcription and/or translation is required for biofilm dissolution. We found that in 12-hour-old Shewanella oneidensis MR-1 biofilms, a reduction in cellular ATP concentration, induced either by oxygen deprivation or by addition of the inhibitor of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), dinitrophenol (DNP), or CN(-), resulted in massive dissolution. In 60-hour-old biofilms, the extent of uncoupler-induced cell loss was strongly attenuated, indicating that the integrity of older biofilms is maintained by means other than those operating in younger biofilms. In experiments with 12-hour-old biofilms, the transcriptional and translational inhibitors rifampin, tetracycline, and erythromycin were found to be ineffective in preventing energy starvation-induced detachment, suggesting that neither transcription nor translation is required for this process. Biofilms of Vibrio cholerae were also induced to dissolve upon CCCP addition to an extent similar to that in S. oneidensis. However, Pseudomonas aeruginosa and P. putida biofilms remained insensitive to CCCP addition. Collectively, our data show that metabolic energy is directly or indirectly required for maintaining cell attachment, and this may represent a common but not ubiquitous mechanism for stability of microbial biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Metabolismo Energético , Shewanella/fisiologia , Trifosfato de Adenosina/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Cianetos/metabolismo , Dinitrofenóis/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/crescimento & desenvolvimento , Shewanella/efeitos dos fármacos , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Desacopladores/metabolismo , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/crescimento & desenvolvimento
3.
FEMS Microbiol Lett ; 308(1): 76-83, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20487019

RESUMO

Type IV pili and a putative EPS biosynthetic gene cluster (mxdABCD) have been implicated previously in biofilm formation in Shewanella oneidensis MR-1. Here, we report that the mannose-sensitive hemagglutinin (MSHA) pilus mediates a reversible, d-mannose-sensitive association of cells to the substratum surface or to other cells that is critical within the first 5 microm of the biofilm from the substratum. The presence of the MSHA pilus alone is insufficient to confer biofilm-forming capacity; its activity, as mediated by the putative pilus retraction motor protein, PilT, is also required. Deletion of pilD, encoding the type IV pili prepilin peptidase, revealed that additional PilD substrate(s) may be involved in biofilm formation beyond the major structural pilin of the MSHA pilus. We also present data showing that the MSHA pilus and mxd genes encode for a complementary set of molecular machineries that constitute the dominant mechanisms enabling biofilm formation in this microorganism under hydrodynamic conditions.


Assuntos
Proteínas de Bactérias/biossíntese , Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Hemaglutininas/biossíntese , Lectina de Ligação a Manose/biossíntese , Shewanella/crescimento & desenvolvimento , Shewanella/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Deleção de Genes
4.
J Bacteriol ; 188(7): 2681-91, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16547056

RESUMO

Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral-reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associated glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a DeltamxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Shewanella/fisiologia , Aderência Bacteriana , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Polissacarídeos/metabolismo , Shewanella/genética , Shewanella/ultraestrutura
5.
J Bacteriol ; 187(3): 1014-21, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659679

RESUMO

Active detachment of cells from microbial biofilms is a critical yet poorly understood step in biofilm development. We discovered that detachment of cells from biofilms of Shewanella oneidensis MR-1 can be induced by arresting the medium flow in a hydrodynamic biofilm system. Induction of detachment was rapid, and substantial biofilm dispersal started as soon as 5 min after the stop of flow. We developed a confocal laser scanning microscopy-based assay to quantify detachment. The extent of biomass loss was found to be dependent on the time interval of flow stop and on the thickness of the biofilm. Up to 80% of the biomass of 16-h-old biofilms could be induced to detach. High-resolution microscopy studies revealed that detachment was associated with an overall loosening of the biofilm structure and a release of individual cells or small cell clusters. Swimming motility was not required for detachment. Although the loosening of cells from the biofilm structure was observed evenly throughout thin biofilms, the most pronounced detachment in thicker biofilms occurred in regions exposed to the flow of medium, suggesting a metabolic control of detachability. Deconvolution of the factors associated with the stop of medium flow revealed that a sudden decrease in oxygen tension is the predominant trigger for initiating detachment of individual cells. In contrast, carbon limitation did not trigger any substantial detachment, suggesting a physiological link between oxygen sensing or metabolism and detachment. In-frame deletions were introduced into genes encoding the known and putative global transcriptional regulators ArcA, CRP, and EtrA (FNR), which respond to changes in oxygen tension in S. oneidensis MR-1. Biofilms of null mutants in arcA and crp were severely impacted in the stop-of-flow-induced detachment response, suggesting a role for these genes in regulation of detachment. In contrast, an DeltaetrA mutant displayed a variable detachment phenotype. From this genetic evidence we conclude that detachment is a biologically controlled process and that a rapid change in oxygen concentration is a critical factor in detachment and, consequently, in dispersal of S. oneidensis cells from biofilms. Similar mechanisms might also operate in other bacteria.


Assuntos
Biofilmes , Shewanella/fisiologia , Sequência de Bases , Adesão Celular , Primers do DNA , Genótipo , Cinética , Plasmídeos/genética , Shewanella/genética , Shewanella/crescimento & desenvolvimento
6.
J Bacteriol ; 186(23): 8096-104, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15547283

RESUMO

Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we investigated S. oneidensis biofilms developing on glass surfaces in a hydrodynamic flow chamber system. After initial attachment, growth of microcolonies and lateral spreading of biofilm cells on the surface occurred simultaneously within the first 24 h. Once surface coverage was almost complete, biofilm development proceeded with extensive vertical growth, resulting in formation of towering structures giving rise to pronounced three-dimensional architecture. Biofilm development was found to be dependent on the nutrient conditions, suggesting a metabolic control. In global transposon mutagenesis, 173 insertion mutants out of 15,000 mutants screened were identified carrying defects in initial attachment and/or early stages in biofilm formation. Seventy-one of those mutants exhibited a nonswimming phenotype, suggesting a role of swimming motility or motility elements in biofilm formation. Disruption mutations in motility genes (flhB, fliK, and pomA), however, did not affect initial attachment but affected progression of biofilm development into pronounced three-dimensional architecture. In contrast, mutants defective in mannose-sensitive hemagglutinin type IV pilus biosynthesis and in pilus retraction (pilT) showed severe defects in adhesion to abiotic surfaces and biofilm formation, respectively. The results provide a basis for understanding microbe-mineral interactions in natural environments.


Assuntos
Biofilmes/crescimento & desenvolvimento , Shewanella/fisiologia , Adenosina Trifosfatases/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Fímbrias Bacterianas/fisiologia , Proteínas Motores Moleculares/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...